

SWARNANDHRA

College of Engineering & Technology (Autonomous) Narsapur - 534 280.

DEPARTMENT OF COMPUTER & SCIENCE ENGINEERING

DATAMINIG AND DATA WAREHOUSING LESSON PLAN

Course Code	Course Title	Semester	Branch	Contact Hrs/Week	Sections
16CS7T03	Data Mining And Data WareHousing	VII	CSE	6	A,B&C

COURSE OUTCOMES:

CO1: Understand why there is a need for data warehouse in addition to traditional operational Database systems

CO2: Identify components in typical data warehouse architectures

CO3. Process raw data to make it suitable for various data mining Algorithms.

CO4: Design a data warehouse and understand the process required to construct one

CO5: Solve real data mining problems by using the right tools to find interesting patterns

Week No	Outcome	Topics/Activity		Ref Te xt Bo ok	Con. Hr	Delivery method
	1	UNIT – I :	INTRODUCTION TOTAL	AL H	OURS:	10
1		1.1	What Motivated Data Mining, Why Is It Important	T2	1	
		1.2	Data Mining—On What Kind of Data	T2	1	
	CO1: Understand why there is a need for data warehouse	1.2.1	Relational databases	T2		
	in addition to traditional operational database systems	1.2.2	Data Warehouses	T2		
		1.2.3	Transactional Databases	T2	1	
2		1.2.4	Advanced Data and Information Systems and Advanced Applications	T2		
		1.3	Data Mining Functionalities	T2		
		1.3.1	Characterization and discrimination	T2	1	
		1.3.2	Mining frequent Patterns, Associations, Correlatio ns	T2		

	CO5: Solve real data	1.3.3	Classification and prediction	T2		
3	mining problems by using the right tools to find	1.3.4	Cluster analysis	T2	1	
	interesting pattern	1.3.5	Outlier Analysis	T2	1	
		1.3.6	Evolution Analysis	T2		
		1.4	Are All of the Patterns Interesting?	T2	1	
		1.5	Classification of Data Mining Systems	T2	1	
		1.6	Data Mining Task Primitives	T2	1	
		1.7	Integration of a Data Mining System with a Database or Data Warehouse System	T2	1	
		1.8	Major Issues in Data Mining.	T2	1	

ADD ON TOPICS: Grid DB

Assignment questions:

- 1) Discuss knowledge discovery process in data mining
- 2) List out major issues in data mining
- 3)Discuss about Data mining functionalities.

Model Paper Questions:

- 1)Write about classification of data mining systems(K2)
- 2)List out the five primitives for specifying a data mining task(k1)

UNIT – II: DATA PRE-PROCESSING **TOTAL HOURS:10 T2** 2.1 Why Pre-process the Data 1 4 **T2** 2.2 1 Descriptive Data summarization Measuring the Central **T2** 2.2.1 5 Tendency 1 Measuring the Dispersion of **T2** CO5. Solve real data 2.2.2 Chalk Data 6 mining problems by using and talk Graphic Display of Basic **T2 PPT** the right tools to find 2.2.3 1 Description of Data Summaries interesting patterns Smart **T2** 2.3 **Data Cleaning** Board **T2** 2.3.1 Missing Values 1 **T2** 2.3.2 Noisy Data **T2** 2.3.3 Data cleaning as a Process **T1** Data Integration and 2.4 1 Transformation

	2.5	Data Reduction	T2	1	
	2.5.1	Data Cube Aggregation	T2	1	
	2.5.2	Attribute Subset Selection	T2	1	
	2.5.3	Dimensionality Reduction	T2	1	
	2.5.4	Numerosity reduction	T2	1	
	2.5.2	Data Discretization and Concept Hierarchy Generation	T2	1	

ADD ON TOPICS: DATA PREPROCESSING IN WEB USAGE MINING

Assignment questions:

- 1) Explain Various data cleaning techniques in pre-processing(k4)
- 2) Suppose that the data for analysis includes the attribute age. The age values for the data tuples are (in increasing order)
 - 13, 15, 16, 16, 19,20,20,21,22,22,25,2525, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52,70.

Compute the following: (K3)

a)find (roughly) the first quartile (Q1) and the third quartile

(Q3) of the data?

b)Give the five-number summary of the data.

c)Show a boxplot of the data.. Discuss various coupling techniques to integrate data mining systems with data warehouse.(k2)

Model Paper Questions:

- 1) Explain Concept hierarchy generation for numerical data (k3)
- 2) Calculate Chi-Square value from the following data samples (K4)

	male	female
Fiction	250	200
Non fiction	50	1000

UNIT – III DATA WAREHOUSE AND OLAP TECHNOLOGY TOTAL HOURS:09

		1				ı
7	CO2: Identify components					
	in typical data warehouse	3.1	What Is a Data Warehouse?	T2	1	
	architectures	3.2	A Multidimensional Data Model	T2	1	
		3.3	Data Warehouse Architecture	T2	1	Chalk and talk/
8			Steps for the Design and	T2		PPT
0		3.3.1	Construction of Data			Smart
	CO4: Design a data		Warehouses		1	Board
	warehouse and understand	222	A Three-Tier Data Warehouse	T2		
	the process required to	3.3.2	Architecture			
	construct one	3.3.3	Data Warehouse Back-End Tools	T2	1]
		3.3.3	and Utilities			

3.3.4	Metadata Repository	T2	1
3.3.5	Types of OLAP servers	T2	1
3.4	Data Warehouse Implementation	T2	1
3.5	From Data Warehousing to Data Mining	T2	1

ADD ON TOPICS: DATA LAKE

Assignment questions:

- 1)Define Data warehouse. Differentiate between OLTP and OLAP(K1)
- 2) Explain the Three Tier Data warehouse Architecture with neat diagram.(K3)

Model Paper questions:

- 1)Discuss different OLAP operations with an example(K2)
- 2) Describe about materialization Methods in data warehouse implementation(K1)

9			IID –I EXAMINATIONS			
	UN	IT – IV :	: CLASSIFICATION TOT	CAL H	IOUR	S:12
			l n · C	TD:1		
		4.1	Basic Concepts	T1	1	
10		4.2	General Approach to solving a classification problem	T1	1	
		4.3	Decision Tree Induction	T1	1	
	CO3. Process raw data to make it suitable for various	4.3.1	Working of Decision Tree	T1	1	
	data mining Algorithms.	4.3.2	Building a decision tree	T1	1	
	CO5: Solve real data	4.3.3	Methods for expressing an attribute test conditions	T1	1	Chalk nd tal
11	mining problems by using the right tools to find	4.3.4	Measures for selecting the best split	T1	1	PPT Smar
	interesting patterns	4.3.5	Algorithm for decision tree induction	T1	1	Boar
		4.4	Model Over fitting	T1	1	
		4.4.1	Due to presence of noise	T1	1	
		4.4.2	Due to lack of representation samples,	T1	1	
12		4.5	Evaluating the performance of classifier:	T1	1	
		4.5.1	Holdout method	T1	1	
		4.5.2	Random subsampling	T1	1	
		4.5.3	Cross-validation	T1	1	
		4.5.4	Bootstrap.	T1	1	

Assignment questions:

1)Explain how to build a decision tree(K2)

2)write about general approach to solving a classification problem(K3)

Model Paper questions:

Describe the different measure for selecting the best split in decision tree induction(K1)

Define Hunts algorithm. How is it helpful to construct decision tree.(k1)

UNIT -V: ASSOCIATION ANALYSIS: BASIC CONCEPTS AND ALGORITHMS -TOTAL HOURS:09

13				l ma		
		5.1	Introduction,	T1	1	
		5.2	Frequent Itemset Generation	T1	1	
	CO3. Process raw data to	5.2.2	Apriori Principle	T1	1	
14	make it suitable for various data mining Algorithms.	5.2.3	Frequent Itemset Generation in the Apriori Algorithm	T1	1	Chalk and talk/
14	CO5. Solve real data	5.2.4	Candidate Generation and pruning	T1	1	PPT Smart
	mining problems by using	5.2.5	Support Counting	T1	1	Board
	the right tools to find interesting patterns	5.2.6	Computational Complexity	T1	1	
	microsing patterns	5.2.7	Rule generation	T1	•	
		5.3	Compact representation of frequent item sets	T1	1	
		5.4	FP-Growth Algorithm	T1	1	

ADD ON TOPICS: A Novel Quantity based Weighted Association Rule Mining.

Assignment questions:

- 1) Explain FP-growth algorithm for the generation of frequent itemsets(K2)
- 2) Write the Apriori Algorithm for Rule Generation(K3)

Model Paper questions:

- 1) Compare Apriori and FP-Growth Algorithm(K4)
- 2) Write the steps to construct an FP-Tree with an Example(K3)

UNIT -VI: CLUSTER ANALYSIS: BASIC CONCEPTS AND ALGORITHMS TOTAL HOURS:10

	666 5	6.1	Overview	T1	1	
	CO3. Process rw data to	6.1.1	What Is Cluster Analysis	T1	1	
15	make it suitable for various	6.1.2	Different Types of Clusterings	T1		C1 11
	data mining Algorithms.	6.1.3	Different Types of Clusters	T1	1	Chalk and talk/
		6.2	K-Means	T1	1	PPT
	CO5 : Solve real data	6.2.1	The Basic K-means Algorithm	T1	4	Smart
16	mining problems by using	6.2.2	K-means Additional Issues	T1	1	Board
	the right tools to find	6.2.3	Bisecting K-means	T1		
	interesting patterns	6.2.4	K-means and Different Types	T1	1	
		0.2.4	of Clusters			
17		6.2.5	Strengths and Weaknesses	T1	1	

		6.2.6	K-means as an Optimization Problem	T1	
		6.3	Agglomerative Hierarchical Clustering	T1	1
		6.3.1	Basic Agglomerative Hierarchical Clustering Algorithm	T1	1
		6.3.2	Specific Techniques	T1	
		6.4	DBSCAN	T1	1
		6.4.1	Traditional Density	T1	
		6.4.2	The DBSCAN Algorithm	T1	1
		6.4.3	Strengths and Weaknesses	T1	
ADD (ON TOPICS: Text Mining,	Graph Mi	ning		
10		rithm and a rarchical C clustering r	methods(K3)		s.(K2)
18		MID	-II EXAMINATION		
19	I	END SEM	ESTER EXAMINATIONS		
20-21	1				
	1	LECTURE	E HOUR TOTAL:60		
		ADD (ON TOPICS: 06		
		GRA	ND TOTAL:66		

	TEXT BOOKS						
S. No	AUTHORS, BOOK TITLE ,EDITION, Publisher, YEAR OF PUBLICATION						
1.	Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Introduction to Data Mining						
	Pearson-2016						
2.	Jiawei Han, Michel Kamber, Data Mining concepts and Techniques, Elsevier, Third Edition-2011						
3.	Arun K Pujari ,Data Mining Techniques, University Press E-edition:First Published 2013						
Web Do	etails						
1.	http://www.kdd.org/						
2.	nptel.ac.in/courses/106106093/35						

		NAME	SIGNATURE WITH DATE
I	FACULTY	N.TULASI RAJU	
II	FACULTY	Dr.P.SRINIVASULU	
III	COURSE COORDINATOR	N.TULASI RAJU	
IV	MODULE COORDINATOR	Dr.P.SRINIVASULU	
V	PROGRAMME COORDINATOR	Dr.P.SRINIVASULU	

Faculty